17 research outputs found

    African tropical rainforest net carbon dioxide fluxes in the twentieth century

    Get PDF
    The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in CO2 fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (−0.02 kg C m−2 yr−1 or −0.04 Pg C yr−1, p < 0.05) with increasing strength fourfold in the second half of the century. The models were in close agreement on net CO2 flux at the beginning of the century (σ1901 = 0.02 kg C m−2 yr−1), but diverged exponentially throughout the century (σ2010 = 0.03 kg C m−2 yr−1). The increasing uncertainty is due to differences in sensitivity to increasing atmospheric CO2, but not increasing water stress, despite a decrease in precipitation and increase in air temperature. However, the largest uncertainties were associated with the most extreme drought events of the century. These results highlight the need to constrain modelled CO2 fluxes with increasing atmospheric CO2 concentrations and extreme climatic events, as the uncertainties will only amplify in the next century

    From fuzzy to annotated semantic web languages

    Get PDF
    The aim of this chapter is to present a detailed, selfcontained and comprehensive account of the state of the art in representing and reasoning with fuzzy knowledge in Semantic Web Languages such as triple languages RDF/RDFS, conceptual languages of the OWL 2 family and rule languages. We further show how one may generalise them to so-called annotation domains, that cover also e.g. temporal and provenance extensions

    A calculus of cyber-physical systems

    Get PDF
    We propose a hybrid process calculus for modelling and reasoning on cyber-physical systems (CPSs). The dynamics of the calculus is expressed in terms of a labelled transition system in the SOS style of Plotkin. This is used to define a bisimulation-based behavioural semantics which support compositional reasonings. Finally, we prove run-time properties and system equalities for a non-trivial case study

    A calculus of cyber-physical systems

    Get PDF
    We propose a hybrid process calculus for modelling and reasoning on cyber-physical systems (CPSs). The dynamics of the calculus is expressed in terms of a labelled transition system in the SOS style of Plotkin. This is used to define a bisimulation-based behavioural semantics which support compositional reasonings. Finally, we prove run-time properties and system equalities for a non-trivial case study
    corecore